Lydian
Protocol Audit

© .studio

Date: 17/02/2022
Git Revision: 6f88efc32055841balb49a6ba6lf74dffdb5alas

This document does not provide any security warranty or a faultlessness guarantee on the smart

contracts code of the Lydian protocol


https://0f.studio
https://github.com/0xronos/lydian-dao

Protocol Summary

Protocol Actors

User Stories
Auction
Bond Depository
Bond Teller
Staking
Staking Distributor
Treasury
Value Calculator
DAO
Wrapped Lydian Creator
Governance
Lydian Token
Staked Lydian Token
Wrapped Lydian Token

Findings
Findings Severity Classification
OF-LDN-001 - Debtor can potentially deplete treasury from its assets
Context
Concern
Recommendation
OF-LDN-002- A user can transfer burned staked lydians back to his account upon

0 N N N NN OO 000 oo oot A BB DD DMOWOW®

claiming rebase 10
Context 10
Concern 10
Recommendation 11

OF-LDN-003 - A user’s staked lydians balance does not include rebase rewards 12
Context 12
Concern 12
Recommendation 13

OF-LDN-004 - A user can withdraw lydians from a canceled auction in case the auction

minimum price was less than 1 dollar. 15
Context 15
Concern 15
Recommendation 16

OF-LDN-005 - A debtor can burn staked lydians regardless of his current debt 17
Context 17
Concern 17
Recommendation 17

OF-LDN-006 - Users would not be able to withdraw all lydian tokens that they are eligible

for from a successful auction 19
Context 19
Concern 19



Recommendation

OF-LDN-007 - DAO can transfer treasury tokens without updating the treasury token
reserves

Context
Concern
Recommendation
OF-LDN-008 - A user will not be able to transfer his minted staked lydian tokens
Context
Concern
Recommendation
OF-LDN-009 - Undocumented protocol administration entry point
Context
Concern
Recommendation
OF-LDN-010 - Token commitment when voting
Context
Concern
Recommendation
OF-LDN-011 - General fixes

Conclusion

20

21
21
21
21
23
23
23
24
25
25
25
25
27
27
27
27
29

Ky



Protocol Summary

Lydian is a decentralized reserve currency protocol based on the
Lydian (LDN) token. The Lydian token is backed by assets, including
USDA & WwWLDN/USDA LP tokens, in the Lydian treasury. Users can
benefit from the protocol and gain rewards either through staking
their Lydian tokens or purchasing bonds. Users can wrap their Lydian
tokens and provide liquidity to the wLDN/USDA pool on Arkadiko whose
initial liquidity is provided by the Lydian team. Besides, users can
buy wrapped Lydians (wWLDN) on Arkadiko and stake them on Lydian.

During the protocol bootstrapping phase, users can participate in an
auction to receive Lydian tokens through committing USDA tokens.

The protocol has a governance process in place through which users
can submit proposals that run for 10 days and vote for proposals
using staked or lydian tokens. The approved proposals are executed
through the DAO.

Protocol Actors

User Any user that uses the protocol for staking or buying
bonds
DAO A contract that executes proposals approved through the

active governance

Depositor | User added by the DAO with the ability to deposit tokens

to the Lydian treasury and get Lydians in return

Debtor User added by the DAO with the ability to incur treasury
debt and receiving treasury assets to be used in yield
farming

Minter A contract enabled to mint/burn tokens




User Stories

Below is the set of user stories, grouped by contract, the audit was
based on. Listed next to a user story are the findings associated

with

it, if any.

Auction

Bond

Bond

User can commit USDA, @F-LDN-066
User can withdraw LND once auction successfully ended,

BESEDNZ004, oF -LDN-006

User can withdraw committed USDA if auction failed or canceled

DAO can cancel the auction, _

DAO can transfer tokens from auction contract

DAO can add an auction, BESLDN=664

Depository

User can deposit token and set slippage, receives sLDN after
vesting

DAO can add and update a bond

DAO can set active bond teller

DAO can set active treasury

Teller

User can redeem LDN after vesting ends
DAO can set active bond depository
DAO can set active staking

DAO can set active treasury

DAO can enable/disable contract

DAO can migrate funds

Staking

User can stake LDN and will receive same amount of sLDN
User can unstake sLDN and will receive same amount of LDN
User can execute rebase if epoch-end-block reached

DAO can update epoch length and end-block

DAO can set active staking distributor

DAO can enable/disable contract

DAO can migrate funds, GESLDNSGO3

Staking Distributor

Active recipient can get new rewards according to rate
schedule
DAO can set active treasury



e DAO can add recipient with reward rate
e DAO can set adjustment rate and target

Treasury

User can audit reserve token to save total reserves
Depositor can deposit token and get LDN

Depositor can withdraw token for LDN

Debtor can incur debt, BESLDNS001, PESLDN=6@3, oF-LDN-005
Debtor can repay debt

DAO can enable reserve token

DAO can disable reserve token

DAO can set active minter

DAO can set enable/disable debtor for certain token
DAO can set enable/disable depositor for certain token
DAO can enable/disable contract

DAO can transfer token, @F-LDN-6067

DAO can migrate funds, GESLDN=663

Active minter can mint LDN if enough excess reserves,
OF -LDN-007

Value Calculator
e DAO can add token info
DAO

e Active governance can execute proposal as DAO
e Proposal executed by DAO can update active governance

Wrapped Lydian Creator

e User can wrap sLDN into wLDN
e User can unwrap WLDN to sSLDN

Governance

User can create proposal that runs for 10 days, _
User can vote for/against a proposal by sending LDN or SLDN,
©F-LDN-010

User can claim back tokens after a proposal ended

User can execute proposal once

Contract owner can create proposal that runs for a certain
amount of days

Contract owner can execute proposal immediately, OF-LDN-009
DAO can enable/disable contract

DAO can migrate funds, GESLDNSGO3



Lydian Token

SIP-010

User can burn owned LDN

Active minter can mint new LDN for any wallet
Active minter can burn LDN for any wallet

DAO can set active minter

DAO can set token URI

Staked Lydian Token

sIp-010, BESLDNSGG3, oF-LDN-008

User can claim rebase rewards

User can burn owned sLDN, OF-LDN-002, OF-LDN-005

DAO can set active staking

DAO can set active treasury

DAO can enable/disable contract

DAO can migrate funds, GESLDN=663

DAO can mint/burn tokens from any wallet, 9F-LDN-062,
OF-LDN-008

e Active staking can rebase, GESLDN=683

Wrapped Lydian Token

SIP-010

User can burn owned wLDN

DAO can set active minter

Active minter can mint/burn tokens for any wallet



Findings

Findings Severity Classification

A finding is an issue in the protocol that might get exploited or
cause the protocol not to function properly or as expected. Findings
are classified as per the below:

A high severity issue or vulnerability means that your
smart contract can be exploited. Issues on this level are critical
to the smart contract’s performance or functionality and we
recommend these issues to be fixed before moving to a live
environment.

Medium: The issues marked as medium severity usually arise because
of errors and deficiencies in the smart contract code. Issues on
this level could potentially bring problems, and they should still
be fixed.

Low: Low-level severity issues can cause minor impact and or are
just warnings that can remain unfixed for now. It would be better to
fix these issues at some point in the future.

Informational issues indicate an improvement request,
a general question, a cosmetic or documentation error, or a request
for information. There is low-to-no impact.

OFSIDN®88d - Debtor can potentially deplete
treasury from its assets

Context

The DAO assigns a debtor that is able to incur treasury debt and
receive in return treasury assets as long as the debtor has enough
staked lydians in his balance. The debtor uses the assets retrieved
from the treasury to provide liquidity to pools in other Defi
protocols and earn rewards.

Concern

The debtor would be able to deplete treasury from its assets through
in-curing debt to receive usda tokens, wldn/usda lp tokens or other
supported treasury assets. Then the debtor would use these tokens to
stake more Lydians, which gives him the ability to incur more debt.



The debtor can keep on doing so, depleting the treasury from its
reserves. Steps leading to this issue:

1. Debtor incur treasury debt through the incur-debt method of
the treasury-v1-1 contract.

(define-public (incur-debt (token-trait <ft-trait>) (value-calculator
<value-calculator-trait>) (amount uint))

(let (

(debtor tx-sender)

(token-map (get-reserve-token (contract-of token-trait)))

(value (unwrap-panic (get-token-value token-trait value-calculator amount)))
(debtor-enabled (get enabled (get-debtor-info debtor (contract-of token-trait))))
(available-debt (unwrap-panic (contract-call? .staked-lydian-token get-available-debt
debtor))))

2. Debtor gets wrapped lydians on Arkadiko using the Lydian
treasury tokens he got in step 1

3. Debtor unwraps wLDN tokens to staked lydians

(define-public (unwrap (amount uint))
(let (

(claim-result (claim))
(recipient tx-sender)

(index (contract-call? .staked-lydian-token get-index))
(staked-amount (/ (* amount index) u1000000))

)

(try! (as-contract (contract-call? .staked-lydian-token transfer staked-amount
(as-contract tx-sender) recipient none)))

(try! (contract-call? .wrapped-lydian-token burn recipient amount))

(ok staked-amount)

)
)
4. Debtor incur more treasury debt now that he has more staked
lydians and thus more available debt balance
Recommendation

Use a decentralized process to enable farming while avoiding this
scenario. Benefit from the protocol governance process to submit a
proposal that would incur treasury debt and directly provide
liquidity to liquidity pools in other DeFi protocols upon proposal
approval and without the need for the debtor role.



OF-LDN-602- A user can transfer burned staked
lydians back to his account upon claiming rebase

Context

Staked lydian token is a SIP-010 token that allows users to burn
their tokens through the implementation of a burn method. Users can
stake their lydian tokens and get in return rewards through a rebase
mechanism that happens every epoch.

The rebase mechanism mainly increases the number of minted staked
lydian tokens to match the amount of lydian tokens the staking
contract has. This additional amount of staked lydian tokens will go
as rewards to users that are staking their tokens. The mechanism
represents the user staked lydian token balance in fragments and
updates the fragments per token every epoch instead of updating the
balances for all users.

Concern

The implemented burn method in the staked-lydian-token contract only
burns user tokens without updating user token fragments information.

(define-public (burn (recipient principal) (amount uint))
(begin

(asserts!

(or

(is-eq contract-caller .lydian-dao)
(is-eq contract-caller recipient)

)

(err ERR-NOT-AUTHORIZED)

)

(ft-burn? staked-lydian amount recipient)
)

)

The user will be able to transfer back his burned tokens upon
claiming rebase rewards since the amount of staked Lydians that is
claimed depends on the number of fragments the user has which still
includes the fragments related to the burned tokens.

(define-public (get-claim-rebase (account principal))

(let (

(fragments (get fragments (get-account-fragments account)))
(new-balance (/ fragments (var-get fragments-per-token)))
(current-balance (unwrap-panic (get-balance account)))
(diff (- new-balance current-balance))

)
(ok diff)



Recommendation

To avoid this behavior, the protocol should update the
account-fragments map after burning tokens so that it reflects the
new token amounts.

(define-public (burn (recipient principal) (amount uint))
(let

(

(fragments (get fragments (get-account-fragments recipient)))
(burn-fragments (/ amount (var-get fragments-per-token)))
(new-fragment-balance (- fragments burn-fragments))

)

(asserts!

(or

(is-eq contract-caller .lydian-dao)

(is-eq contract-caller recipient)

)
(err ERR-NOT-AUTHORIZED)

)

(map-set account-fragments { account: recipient } { fragments: new-fragment-balance })
(ft-burn? staked-lydian amount recipient)

)

)



OFSIDN®G83 - A user’s staked lydians balance does
not include rebase rewards

Context

The protocol gives users the opportunity to gain rewards by staking
their lydian tokens. The rewards are generated and claimed through
the rebase mechanism. The user should mainly claim his rewards.

Concern

The rebase logic updates the number of fragments per token. A user
would still have the same staked lydians balance after a rebase
unless he manually claims the rewards. This impacts the protocol
decisions that depend on a user’s staked lydian balance. Below is a
list in the identified cases:

A user might not be able to submit a proposal even though he has 1%
of the total token supply.

(define-public (propose-public

(title (string-utf8 256))

(url (string-utf8 256))

(contract principal)

(start-block-height uint))

(let (

(supply (unwrap-panic (contract-call? .lydian-token get-total-supply)))

(ldn-balance (unwrap-panic (contract-call? .lydian-token get-balance tx-sender)))
(sldn-balance (unwrap-panic (contract-call? .staked-lydian-token get-balance tx-sender)))

(total-balance (+ ldn-balance sldn-balance))

)

(asserts! (>= (* total-balance ul00) supply) (err ERR-INSUFFICIENT-BALANCE))

(propose title url contract start-block-height u1440)

11



1. A debtor might not be able to incur treasury debt even though

he might have enough staked lydians that are not yet reflected

in his balance

(define-public (incur-debt (token-trait <ft-trait>) (value-calculator
<value-calculator-trait>) (amount uint))

(let (

(debtor tx-sender)

(token-map (get-reserve-token (contract-of token-trait)))

(value (unwrap-panic (get-token-value token-trait value-calculator amount)))
(debtor-enabled (get enabled (get-debtor-info debtor (contract-of token-trait))))
(available-debt (unwrap-panic (contract-call? .staked-lydian-token get-available-debt
debtor)))

)

(asserts! (var-get contract-is-enabled) (err ERR-CONTRACT-DISABLED))

(asserts! debtor-enabled (err ERR-DEBTOR-NOT-AUTHORIZED))

(asserts! (>= available-debt value) (err ERR-EXCEED-DEBT-LIMIT))

(asserts! (is-eq (contract-of value-calculator) (get value-calculator token-map)) (err
ERR-WRONG-VALUE-CALCULATOR))

2. Migrating funds in different contracts would not transfer
staked lydians rewarded through a rebase

(define-public (migrate-funds (recipient principal))

(let (

(ldn-balance (unwrap-panic (contract-call? .lydian-token get-balance (as-contract
tx-sender))))

(sldn-balance (unwrap-panic (contract-call? .staked-lydian-token get-balance (as-contract
tx-sender))))

)

(asserts! (is-eq tx-sender .lydian-dao) (err ERR-NOT-AUTHORIZED))

(if (> ldn-balance u@)

(try! (as-contract (contract-call? .lydian-token transfer ldn-balance (as-contract
tx-sender) recipient none)))

true

)

Recommendation

One solution to fix this would be to check for the rebase whenever

the get-balance method is used. Claim rebase before using the staked

lydian token get-balance method then continue with the protocol
logic.

12



(define-public (propose-public

(title (string-utf8 256))

(url (string-utf8 256))

(contract principal)

(start-block-height uint)

)

(let (

(supply (unwrap-panic (contract-call? .lydian-token get-total-supply)))
(ldn-balance (unwrap-panic (contract-call? .lydian-token get-balance tx-sender)))
(rebase (unwrap-panic (contract-call? .staked-lydian-token claim-rebase )))
(sldn-balance (unwrap-panic (contract-call? .staked-lydian-token get-balance tx-sender)))
(total-balance (+ ldn-balance sldn-balance))

)

(asserts! (>= (* total-balance ul100) supply) (err ERR-INSUFFICIENT-BALANCE))

(propose title url contract start-block-height ul440)

13



ZRWNRCZ% - A user can withdraw lydians from a
canceled auction in case the auction minimum price
was less than 1 dollar.

Context

The protocol enables users to get lydian tokens by participating in
an auction. The DAO creates an auction setting the auction minimum
price, maximum price, payment token, start block and end block. If
the auction is successful, participants would be able to withdraw
lydian tokens from the auction contract. Besides, the DAO has the
ability to cancel an auction at any point in time.

Concern

If the auction minimum price was set to a value that is less than 1
dollar, the canceled auction status would be successful and
participants would be able to withdraw lydians from the auction.
Below are the steps leading to this issue:

1. DAO creates an auction with minimum price less than or equal
to 1 dollar

(define-public (add-auction
(payment-token principal)

(start-block uint)

(end-block uint)

(total-tokens uint)

(start-price uint)

(min-price uint)

)

(let (

(auction-id (var-get auction-counter))
)

(asserts! (is-eq tx-sender .lydian-dao) (err ERR-NOT-AUTHORIZED))

2. Users participates in an auction by committing tokens (USDA)

(define-public (commit-tokens (token <ft-trait»>) (auction-id uint) (amount uint))
(let (

(auction (unwrap-panic (get-auction-info auction-id)))

(tokens-to-transfer (calculate-commitment auction-id amount))

)
(asserts! (auction-open auction-id) (err ERR-AUCTION-NOT-OPEN))
(asserts! (is-eq (contract-of token) (get payment-token auction)) (err ERR-WRONG-TOKEN))

3. DAO cancels the auction

(define-public (cancel-auction (auction-id uint))
(let (
(auction (unwrap-panic (get-auction-info auction-id)))

14



(asserts! (is-eq tx-sender .lydian-dao) (err ERR-NOT-AUTHORIZED))

(map-set auction-info
{ auction-id: auction-id }

(merge auction { end-block: block-height, total-tokens: (get total-committed auction) })

)

(ok true)

4. Users withdraw lydian tokens from the auction

(define-public (withdraw-tokens (auction-id uint))
(let (
(user tx-sender)
(claimable (tokens-claimable auction-id user))

(user-committed (get-commitments user auction-id))
(current-claimed (get claimed user-committed))

)
(asserts! (> claimable u@) (err ERR-NO-CLAIMABLE-TOKENS))

Recommendation

Make sure to add validations to the parameters of the add-auction
method in the auction-v1-1 contract. Make sure min-price > 1,
start-block < end-block, start-block > block-height.

(define-public (add-auction

(payment-token principal)
(start-block uint)
(end-block uint)
(total-tokens uint)
(start-price uint)
(min-price uint)

)

(let (
(auction-id (var-get auction-counter))

)
(asserts! (is-eq tx-sender .lydian-dao) (err ERR-NOT-AUTHORIZED))
(asserts! (> min-price ul000000) (err ERR-AUCTION-MIN-PRICE))

Or have a status for the auction reflecting if it is canceled,
successful or failed.

Similar to the add-auction method, other methods in the protocol

executed through the DAO do not include validations for the executed

method parameters.

15



OF-LDN-005 - A debtor can burn staked lydians
regardless of his current debt

Context

The protocol allows debtors to incur treasury debt as long as the
debtor has enough staked lydians. The protocol keeps track of the
debtor's debt balance and locks an equivalent amount of staked
lydians that he is not allowed to transfer to other users.

Concern

A debtor can incur treasury debt and then burn his staked lydian
tokens regardless of his current debt. Below are the steps leading
to this issue:

1. Debtor incur treasury debt

(define-public (incur-debt (token-trait <ft-trait>) (value-calculator
<value-calculator-trait>) (amount uint))
(let (
(debtor tx-sender)
(token-map (get-reserve-token (contract-of token-trait)))
(value (unwrap-panic (get-token-value token-trait value-calculator amount)))
(debtor-enabled (get enabled (get-debtor-info debtor (contract-of token-trait))))

(available-debt (unwrap-panic (contract-call? .staked-lydian-token get-available-debt
debtor)))
)

2. Debtor burns staked lydian tokens regardless of his debt

(define-public (burn (recipient principal) (amount uint))
(begin
(asserts!

(or
(is-eq contract-caller .lydian-dao)
(is-eq contract-caller recipient)

)

(err ERR-NOT-AUTHORIZED)

)

(ft-burn? staked-lydian amount recipient)

Recommendation

Make sure to lock debtor staked lydian token amounts equivalent to
this debt in the burn method of the staked-lydian-token contract.

16



(define-public (burn (recipient principal) (amount uint))
(let

(

(current-balance (unwrap-panic (get-balance recipient)))
(new-balance (- current-balance amount))
(debt (get debt (get-debt-balance recipient))))

(asserts!
(or
(is-eq contract-caller .lydian-dao)
(is-eq contract-caller recipient)
)
(err ERR-NOT-AUTHORIZED)
)
(asserts! (> new-balance debt) (err ERR-DEBT))
(ft-burn? staked-lydian amount recipient))

17



OF-LDN-606 - Users would not be able to withdraw
all lydian tokens they are eligible for from a
successful auction

Context

The protocol gives users the opportunity to get lydian tokens

through participating and committing USDA tokens into an auction. If
the auction was successful, then the user would be able to withdraw

his share of the auction lydian tokens.

Concern

In the auction-vi1-1 contract, the method commit-tokens calculates

the amount of tokens a user can commit taking into consideration the

auction maximum commitment. However, what is being transferred to
the auction is all the amount specified by the user. This would
allow users to commit tokens more than the auction maximum
commitment capacity which will cause the user claimable amount in
case of a successful auction to be much lower than what he is
eligible for.

This is besides the fact that what is being initially transferred
from the user’s account to the auction is more than what it should
be.

(define-public (commit-tokens (token <ft-trait>) (auction-id uint) (amount uint))
(let (
(auction (unwrap-panic (get-auction-info auction-id)))
(tokens-to-transfer (calculate-commitment auction-id amount))
)
(asserts! (auction-open auction-id) (err ERR-AUCTION-NOT-OPEN))
(asserts! (is-eq (contract-of token) (get payment-token auction)) (err ERR-WRONG-TOKEN))

(if (> tokens-to-transfer u@)
(begin

(try! (contract-call? token transfer amount tx-sender (as-contract tx-sender) none))

(add-commitment auction-id tx-sender amount)
)
(ok u@)
)
)
)

18



Recommendation

To fix this issue, the calculated tokens-to-transfer amount should
be the amount transferred from the user to the auction instead of
the amount initially provided by the user.

(define-public (commit-tokens (token <ft-trait>) (auction-id uint) (amount uint))
(let (
(auction (unwrap-panic (get-auction-info auction-id)))
(tokens-to-transfer (calculate-commitment auction-id amount))
)
(asserts! (auction-open auction-id) (err ERR-AUCTION-NOT-OPEN))
(asserts! (is-eq (contract-of token) (get payment-token auction)) (err ERR-WRONG-TOKEN))

(if (> tokens-to-transfer u@)
(begin

(try! (contract-call? token transfer tokens-to-transfer tx-sender (as-contract
tx-sender) none))

(add-commitment auction-id tx-sender tokens-to-transfer)
)
(ok u@)
)
)
)

19



OF-LDN-007 - DAO can transfer treasury tokens
without updating the treasury token reserves

Context

The protocol allows the DAO to transfer assets from the treasury.
Total treasury reserves are updated whenever tokens are deposited or
withdrawn or when a debtor incurs treasury debt or repays the debt.
The treasury keeps track of its excess token reserves making sure
there are enough assets backing the lydian token. If there are not
enough reserves, the treasury stops minting lydians.

Concern

The transfer-tokens method transfers tokens from the treasury
without adjusting treasury reserves. This would let the treasury to
mint lydians even if there is not enough excess reserves. Steps
leading to this issue:

1. DAO transfers treasury assets

(define-public (transfer-tokens (token <ft-trait>) (amount uint) (recipient principal))
(begin
(asserts! (is-eq tx-sender .lydian-dao) (err ERR-NOT-AUTHORIZED))
(try! (as-contract (contract-call? token transfer amount (as-contract tx-sender) recipient
none)))
(ok true)
)
)

2. Treasury mints lydians due to a staking rebase

(define-public (mint (recipient principal) (amount uint))
(let (
(minter-enabled (get enabled (get-minter-info contract-caller)))

(excess-reserves (unwrap-panic (get-excess-reserves)))

)
(asserts! (var-get contract-is-enabled) (err ERR-CONTRACT-DISABLED))
(asserts! minter-enabled (err ERR-NOT-AUTHORIZED))
(asserts! (<= amount excess-reserves) (err ERR-INSUFFICIENT-RESERVES))

(contract-call? .lydian-token mint recipient amount)

)
)

Recommendation

To fix this issue, have the transfer-tokens method call the treasury
audit-reserves-token method to adjust the treasury total reserves
accordingly instead of depending on the proposal to do so.

20



(define-public (transfer-tokens (token <ft-trait>) (value-calculator <value-calculator-trait>)
(amount uint) (recipient principal))
(begin
(asserts! (is-eq tx-sender .lydian-dao) (err ERR-NOT-AUTHORIZED))
(try! (as-contract (contract-call? token transfer amount (as-contract tx-sender) recipient

none)))
(try! (audit-reserve-token token-trait value-calculator))
(ok true)
)
)

21



OF-LDN-008 - A user will not be able to transfer
his minted staked lydian tokens

Context

Staked lydian token is a SIP-010 token that enables minting and
transferring staked lydians. The transfer method depends on the
amount of fragments the sender has.

The protocol keeps track of the number of fragments each user have
and the rebase mechanism depends on the fragments concept to reward
stakers through updating the number of fragments per token instead
of updating the balances of all stakers.

Concern

The mint method in the staked-lydian-token contract does not
associate the recipient with the minted tokens’ fragments. This will
prevent the recipient from transferring his staked lydians as the
transfer method checks for the user token fragments. Steps leading
to this issue:

1. DAO mints staked lydians

(define-public (mint (recipient principal) (amount uint))
(begin
(asserts! (is-eq contract-caller .lydian-dao) (err ERR-NOT-AUTHORIZED))
(ft-mint? staked-lydian amount recipient)
)
)

2. User transfer his staked lydian tokens

(define-public (transfer (amount uint) (sender principal) (recipient principal) (memo
(optional (buff 34))))
(let (
(fragments-to-transfer (* amount (var-get fragments-per-token)))

(sender-fragments (get fragments (get-account-fragments sender)))
(recipient-fragments (get fragments (get-account-fragments recipient)))

(new-sender-fragments (- sender-fragments fragments-to-transfer))
(new-recipient-fragments (+ recipient-fragments fragments-to-transfer))

(current-sender-balance (unwrap-panic (get-balance sender)))
(new-sender-balance (- current-sender-balance amount))

(sender-debt (get debt (get-debt-balance sender)))

(asserts! (var-get contract-is-enabled) (err ERR-CONTRACT-DISABLED))

22



(asserts! (is-eq tx-sender sender) (err ERR-NOT-AUTHORIZED))
(asserts! (>= new-sender-balance sender-debt) (err ERR-DEBT))

Transfer will not happen since the sender fragments is @ as the mint
method did not update the account-fragment map.

Recommendation

To fix this issue, the mint method should update the
account-fragments map to include the recipient with the newly minted
tokens fragments.

(define-public (mint (recipient principal) (amount uint))
(let
(
(fragments (get fragments (get-account-fragments recipient)))
(mint-fragments (/ amount (var-get fragments-per-token)))
(new-fragment-balance (+ fragments mint-fragments))
)
(asserts! (is-eq contract-caller .lydian-dao) (err ERR-NOT-AUTHORIZED))
(map-set account-fragments { account: recipient } { fragments: new-fragment-balance })
(ft-mint? staked-lydian amount recipient)

23



OF-LDN-009 - Undocumented protocol administration
entry point

Context

The protocol and its evolution is cleverly designed to be driven in
a decentralized fashion by token holders, through a mechanism of
proposals. Proposals are smart contracts that, when being approved
by a majority of token holders, are being executed on the behalf of
the community as a superuser.

The Lydian protocol includes a myriad of public functions and code
paths that can only be executed if and only if it is executed by the
DAO.

This design is providing a lot of flexibility to the protocol, and
will require a certain due diligence by the token holders voting on
proposals.

Concern

The governance contract includes a method that introduces a notion
of ownership.

(define-public (execute-proposal (proposal-trait <lydian-dao-proposal-trait>))
(begin
(asserts! (is-eq tx-sender (var-get contract-owner)) (err ERR-NOT-AUTHORIZED))
(as-contract (contract-call? .lydian-dao execute-proposal proposal-trait))

)
)

Per this method, the contract deployer would end up having the same
rights and privileges on administering the protocol than a majority
of voting community members, without going through the voting
process.

Recommendation

We understand that in the early life of a protocol, granting special
privileges to the protocol designer to perform certain actions in
case of extraordinary events can be beneficial for every single
participant involved in the protocol.

We would recommend constraining the access of this backdoor could be
a good thing. We would recommend adding a comment to this method
explaining how this endpoint will be used, constraining this access

24



with a time limit, emitting a dedicated event when this method is
being used, and designating a multisig owner.

25



_ - Token commitment when voting

Context

When protocol upgrades or enhancements are being emitted via
proposals, token holders have the ability to vote for or against
their execution. In order to participate to this voting events,
users have to commit tokens, by sending them to the voting contract:

(define-public (vote (vote-for bool) (token <ft-trait>) (proposal-id uint) (amount uint))

(try! (contract-call? token transfer amount tx-sender (as-contract tx-sender) none))

Once the proposal is expired or executed, voters can get back their
tokens by invoking the following method:

(define-public (return-votes-to-member (token <ft-trait>) (proposal-id uint) (member
principal))

(as-contract (contract-call? token transfer token-count tx-sender member none))

Concern
This pattern is interesting and would be required if a punitive
action (slashing mechanism or other) was at play.

This is not the case in this scenario. As such, we would recommend
using a pattern that does not involve a transfer of tokens, which is
an event that requires some trust.

Recommendation

Some other patterns could be explored. In this scenario, we want to
avoid vote manipulation and tokens being spent twice for a given
proposal.

We believe that this could be achieved by using the (at-block ...)
construct. The contract would look at the balance of a voter at the
block where the proposal was created, and use this amount to infer a
voting power.

This could also be achieved with some tweaks at the token contract
level, where users could be locking tokens for a vote. A quantity of
tokens would be tainted and unusable, until the expiration of the
lock.

26



OF-LDN-611 - General recommandations

5.

When block-height is equal to the auction end-block, the
protocol does not consider the auction neither open nor ended.
Make sure the auction is open both on start and end blocks.
Remove warmup & claim methods from the staking-v1-1 contract
as this functionality is not currently in use. Remove as well
all the test methods from all the contracts.

The protocol traits do not include the main methods of the
contracts implementing the traits. For example, the
staking-trait-vl-1 trait does not include the unstake method
of the staking-vi-1 contract. Same for the
bond-teller-trait-vl-1 as it does not include the redeem and
pending methods of the bond-teller-vl-1 contract.

Potential data discrepancies:

a. The add-token method in the value-calculator contract
adds tokens to the token-info map without checking if the
token being added is a valid and enabled treasury reserve
token

b. The set-adjustment method in the staking-distributor-vi-1
adds recipient adjustments without checking if the
recipient is a valid one. Make sure the recipient passed
to the method is part of the recipient-info map.

Simplifying code:

o In the tokens-claimable method in the auction-vil-1

contract, the get-commitments method is called twice:

(user-committed (get committed (get-commitments user auction-id)))

(user-claimed (get claimed (get-commitments user auction-id)))

Instead, call get-commitments once and then retrieve the committed and claimed properties
(user-commitments (get-commitments user auction-id))

(user-committed (get committed user-commitments))

(user-claimed (get claimed user-commitments))

o In an auction, a user will always claim or withdraw all
tokens at once. So (+ current-claimed claimable) could
indeed be replaced by (claimable) in the both
withdraw-tokens & withdraw-committed in the auction-vi-1
contract.

o In the audit-reserve-token in the treasury-vl-1 contract,
use the token variable instead of retrieving it again.
Instead of the below:

(token (contract-of token-trait))

27



(token-map (get-reserve-token (contract-of token-trait)))
Use the following:

(token (contract-of token-trait))

(token-map (get-reserve-token token))

o In the redeem method in the bond-teller-vl-1 contract,
bond-info is being deleted as per the below code:

(map-delete bond-info { id: bond-id })

It would be better to call instead the below existing
method used in the redeem-all method:

(map-delete bond-info { id: bond-id })

o In the next-adjust-rate method in the
staking-distributor-vi-1 contract, the
get-recipient-adjust method is called several times.

(adjust-add (get add (get-recipient-adjust recipient)))
(adjust-rate (get rate (get-recipient-adjust recipient)))
(adjust-target (get target (get-recipient-adjust recipient)))

Instead, call the get-recipient-adjust method once and
then retrieve the add, rate and target properties.

(recipient-adjust (get-recipient-adjust recipient))
(adjust-add (get add recipient-adjust))
(adjust-rate (get rate recipient-adjust))
(adjust-target (get target recipient-adjust))

o as-contract is being used redundantly in different places
in the protocol. For example, in the unstake method of
the staking-vl-1 contract the following code is used to
transfer lydians from the contract to the staker:

(try! (as-contract (contract-call? .lydian-token transfer amount (as-contract tx-sender)
staker none)))

The inner as-contract is redundant as the outer one sets
the tx-sender to the address of the calling contract. Instead, we
can use the below:

28



(try! (as-contract (contract-call? .lydian-token transfer amount tx-sender staker none)))

o The claim method in the wrapped-lydian-creator-vi-1
contract is getting claim-amount first and if it is >u@,
the claim-rebase is being called. No need for this step
as the check for the claim amount is already done in the
claim-rebase method itself.

o In the deposit method of the bond-depository-vi-1
contract, define a variable bond-capacity and set it to
either payout or amount depending on the bond capacity
being payout or not.

Then replace the below code:

(if (get capacity-is-payout bond-type)
(begin
(asserts! (>= capacity payout) (err ERR-BOND-CAPACITY-REACHED))

(map-set bond-types { bond-id: bond-id } (merge bond-type {
capacity: (- capacity payout),
total-debt: (+ (get total-debt bond-type) token-value)
)
)
(begin
(asserts! (>= capacity amount) (err ERR-BOND-CAPACITY-REACHED))

(map-set bond-types { bond-id: bond-id } (merge bond-type {
capacity: (- capacity amount),
total-debt: (+ (get total-debt bond-type) token-value)
)
)
)

with the following:

(asserts! (>= capacity bond-capacity) (err ERR-BOND-CAPACITY-REACHED))

(map-set
bond-types
{ bond-id: bond-id }
(merge bond-type {
capacity: (- capacity bond-capacity),
total-debt: (+ (get total-debt bond-type) token-value)
»)

29



Conclusion

The findings explained in this report were discussed in detail with
the Lydian team that was providing, in time, all the needed
information that helped us assess the protocol smart contracts. The
Lydian team has already fixed 5 major findings (@F-LDN-002, OF-LDN-005,
OF-LDN-006, OF-LDN-007, OF-LDN-008) by the time we were writing the report
as part of their efforts and commitment to properly secure the
protocol.

30



